产品名称
中文名称:多壁碳纳米管(长) >50 nm
英文名称:Multi-walled carbon nanotubes(long) >50 nm
产品概述
碳纳米管是由碳原子组成的单质,可视为石墨烯卷曲形成的中空管状结构。在碳纳米管表面,碳原子彼此间以sp2杂化轨道形式成键,排列为正六边形的石墨层结构。理论上,这种正六边形结构完美地均匀地分布于整个碳纳米管的表面。在拓扑上,石墨烯、碳纳米管所共有的结构和性质,是其具备相似性质的重要因素之一。不过,由于碳纳米管中的石墨层是弯曲的,辅之以生长过程中可能出现的缺陷状况,碳纳米管表面的六元环结构中有可能出现sp3杂化现象,从而导致出现五元环或者七元环。 根据不同层数的石墨片卷曲,碳纳米管分为单壁碳纳米管、双壁碳纳米管、多壁碳纳米管。 碳纳米管的制备工艺与方法有许多种,可以通过不同方法制备出相应性质和结构的碳纳米管。目前,制备碳纳米管的主要方法有石墨电弧法、激光蒸发石墨法、化学沉积法。化学沉积法具有能够规模化生产的优点,是目前应用较为广泛的一种方法。
技术参数
直径:>50 nm
内径:5-15nm
纯度:>95%
长度:<10 μm
比表面积:>40 m2·g-1
EC:>100 s/cm
堆密度:0.18 g/cm3
备注:至2017年11月份起产品由于工艺的变更,长度做了调整,长度变短,分散性能更佳,其他未变化,欢迎广大新老客户选购
产品特点
多壁碳纳米管具有许多独特的性质:
优异的力学性能:具有极高的强度和韧性。例如,其理论强度可达到钢铁的数十倍甚至上百倍。
出色的电学性能:可以表现出良好的导电性,取决于长径比、结构和制备方法。
良好的热学性能:热导率高,能够有效地传递热量。
大的比表面积:这使得它在吸附、催化等领域有潜在的应用。
应用领域
1.复合材料增强:多壁碳纳米管具有较高的强度和韧性,将其添加到塑料、橡胶、金属等基体中,可显著提高材料的力学性能,如强度、刚度等。例如在碳纤维表面嫁接碳纳米管获得多级结构,能增强与有机物基体的界面作用及复合材料力学性能。
2.电子器件:虽然其导电性不如单壁碳纳米管单一和优异,但仍然具有良好的导电性能,可用于制造高性能的导电墨水、传感器、柔性显示器等电子器件。
3.电极材料:可用作锂离子电池和超级电容器的电极材料,提高能量存储和功率输出能力。
4.催化剂及催化剂载体:自身可作为催化剂。也能充当催化剂载体,由于其较大的比表面积和特殊的结构,能够为催化反应提供更多的活性位点,提升催化性能。例如,酸化的多壁碳纳米管可以作为载体对复合无机盐进行负载,制成的固体酸催化剂具有比单组份硫酸铁更优异的催化效果。
5.能源领域:除了前面提到的在电池方面的应用,还可应用于储氢材料。碳纳米管独特的中空结构和纳米管径为氢气存储提供了有利条件。
6.吸波材料:对电磁波有一定的吸收能力,可用于制备吸波材料,在军事隐身、电磁屏蔽等方面有潜在应用价值。
7.生物医药领域:其独特的中空结构和纳米管径可为容纳药物提供空间,能达到较高的载药量,并且可以穿过细胞膜及多种生物屏障,将药物递送到细胞内部。此外,还能有效地降低药物的释放速率,提高缓释效果。
8.科研领域:常用于各种科学研究,帮助科研人员探索纳米材料的性质和潜在应用。
其他信息
如您想了解更多产品详情,可拨打电话400-025-3200,您也可以发送邮件到sale@xfnano.com咨询
Anchoring ultrafine molybdenum phosphide on hierarchical three-dimensional CNTs/rGO framework as efficient electrocatalysts for hydrogen evolution
发布时间:2022
The effect of carbon support on the oxygen reduction activity and durability of single-atom iron catalysts
发布时间:2018
新型可降解导电弹性体实现可穿戴电子器件的直接3D打印重塑利用
内容概述:
基于DA(狄尔斯-阿尔德)反应的新型可重塑、可降解的动态交联弹性体,通过复合纳米导电填料,构筑了具有良好韧性和拉伸性的导电弹性体,其可3D打印便捷定制可穿戴电子器件,其中电子设备的回收加工过程无需其他化学处理和试剂,可以通过直接3D打印进行加工制备。这项工作为定制可穿戴电子设备提供了一种新的有力方法,实现了用于可穿戴电子设备的材料的性能同步优化,包括出色的弹性、导电性、稳定性、加工性、回收性和降解性。新的材料和设计原理为一系列下一代可穿戴电子设备的研究提供了灵感,特别是可以通过3D打印实现直接高效回收和同步加工再利用,为解决日益严重的电子垃圾问题提供了新材料新思路。
创新点:
(1)通过不同维度的导电填料进行复合,构筑了“桥-岛-海”导电网络,显著提高了重塑材料的导电性与稳定性。(2)通过在聚合物交联网络中引入DA反应,实现了材料在加工过程中的状态显著改变,可以直接通过3D打印进行加工回收,无需额外化学处理。(3)将电子器件的可降解性与稳定性有机结合,在保证器件长期稳定性的同时,赋予其一定的降解性,从而减少电子垃圾污染问题。
产品使用感受:
先丰纳米公司的产品类型丰富,性质稳定,对于保证实验重复率有很大帮助,并且价格相对于其它公司有明显的价格优势。在本论文中,我选用了该公司两种产品:导电炭黑(编号XFI15,货号101095)和多壁碳纳米管(编号XFM31,货号100288)。通过不同维度的导电填料进行复合,构筑了“桥-岛-海”导电网络,显著提高了材料的导电性。这些纳米填料在聚合物基底中的均匀分散是保证良好导电性的前提。
课题组方向:
学校:东华大学,导师:游正伟教授
团队近年主要在功能弹性体的设计合成和多领域应用开展一系列研究,包括设计制备新型弹性体,利用3D打印技术对其进行加工成型,拓展其在生物医学和柔性电子领域的应用。
使用先丰产品发表的文章
Guo, Y., et al., Degradable and Fully Recyclable Dynamic Thermoset Elastomer for 3D‐Printed Wearable Electronics. Adv. Funct. Mater. 2020, 2009799.